Abstract

The methods and results of a study to determine the accuracy of continuous wave (CW) Doppler spectral recordings by comparison to the spectra derived from the flow profiles photographed simultaneously in a pulsatile flow visualization model are reported in this paper. A pulsatile pump produced a flow velocity waveform, similar to that seen in the human femoral artery, in a quartz glass tube. The velocity profiles, which were made visible by using a photochromic dye/laser technique, were photographed, and at the same time the instantaneous Doppler spectra were recorded. A comparison of the Doppler data and the photographed profiles gave the following results. The Doppler spectrograms and those reconstructed from the flow visualization data were quite similar. Excellent agreement was observed between the instantaneous maximum and mean Doppler waveforms. Individual spectra showed some differences and these differences were quantified by the novel application of certain statistical shape descriptor coefficients that are based on the estimation of the higher order moments of the spectra. The Doppler spectra are generally more skewed towards higher frequencies, narrower, and more peaked than the flow visualization spectra. Analysis of the assumptions and various sources of error lead to the conclusion that the differences were probably caused by ultrasound beam nonuniformity and the effects of refraction, causing a reduction of the beam field response at the tube edges. It is concluded that provided certain precautions are taken in the measurement technique, the CW Doppler ultrasound spectra fairly accurately represent the true velocity profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call