Abstract

ABSTRACTIn this study, the effect of micro and nano silica and their combination on mechanical and thermal properties of Chlorosulfonated Polyethylene compounds were investigated. Cure characteristics were studied using a Monsanto Moving Die Rheometer at 155°C. Incorporation of nano silica accelerated the vulcanization whereas the micro silica particles decelerated the curing process. Both micro and nano silica increased the crosslink density as evidenced by swelling test. However, this value has been more improved in CSM/nano silica composites. The physico‐mechanical properties of CSM/nano silica are superior compared to CSM/micro silica. Nano silica provided reinforcing efficiency which is not only because of higher specific surface area but also because of various interactions and especially physical interactions which are discussed in the text. Nano silica particles also improved the thermal properties more efficiently. Incorporation of 15 phr (part per hundred) nano and 5 phr micro silica to polymer improved the initial decomposition temperature for about 51°C and 16°C, respectively, using a TGA. The combination of micro and nano silica, showed that by coupling nano and micro fillers, the loading of fillers can be minimized. In other words, the hybrid samples with a lower filler loading behave as efficient as their separate counterpart with higher loading. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42668.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.