Abstract

The experiment was conducted at the Cunningham Research Station in Kinston, N.C. (coordinates: N35 18.372; W77 34.937), on Goldsboro loamy sand. Three cultural systems (bare ground + overhead irrigation bare ground + drip irrigation, black plastic + drip irrigation) and seven fungicide treatments were evaluated in a split-plot design with cultural system as the main plot and fungicide treatments as subplots. The cultivar used was `Mickey Lee'. The trial was installed 18 July. Soil moisture was monitored in each of the cultural regimes using soil moisture sensors (Spectrum Technologies, Inc, Plainfield, IL) and rain gauges. The cultural systems using drip irrigation were irrigated to 10 cb starting when soil moisture reached 40 cb. Overhead irrigation was used to maintain at least 2 inches per week total precipitation beginning 12 Aug. Cultural systems and fungicide treatments were replicated 4 times. To prevent gummy stem blight and powdery mildew, Pristine (14.5 oz/acre) and Quintec (6 oz/acre) were alternated with Bravo Weather Stik (2 pt/acre) and Flint (4 oz/acre) on a 7-day interval, beginning 16 Aug. Experimental fungicide treatments were applied using a CO2 backpack sprayer equipped with a 3-nozzle (19-inch spacing) handheld boom with hollow cone nozzles (TXVS-26) delivering 40 gal/acre at 45 psi. Treatments were initiated when the largest fruit were about 6 inches in diameter. All treatments were applied on a 7-day interval with applications on 25 Aug. and 2, 9, 16, and 23 Sept. Plots were inoculated on 12 and 19 Sept. by hand-scattering 0.5 lb of 1-cm cubes of naturally P. capcisi-infected acorn squash fruit per plot. Disease severity was evaluated on 26 Sept. as fruit rot incidence and percent foliar necrosis. Captan was most effective in suppressing fruit rot regardless of cultural regime. Captan and NOA-446510 were both effective in reducing vine collapse across all cultural regimes. Incidence of fruit decay was significantly greater in the bare ground + overhead irrigation (overhead) cultural regime while plasticulture (plastic) and bare ground + drip irrigation (drip) resulted in similar levels of fruit decay and vine collapse. No interaction of cultural regime with treatment was detected. Watermelon stems and foliage are typically very resistant to Phytophthora blight, but significant vine collapse occurred in many plots. P. capsici was consistently isolated from diseased foliage and stems and is considered the primary cause of vine collapse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call