Abstract

Image registration of lung CT images acquired at different inflation levels has been proposed as a surrogate method to map lung ‘ventilation’. Prior to clinical use, it is important to understand how this technique compares with direct ventilation imaging modalities such as hyperpolarised gas MRI. However, variations in lung inflation level have been shown to affect regional ventilation distributions. Therefore, the aim of this study was to evaluate the impact of lung inflation levels when comparing CT ventilation imaging to ventilation from 3He-MRI.Seven asthma patients underwent breath-hold CT at total lung capacity (TLC) and functional residual capacity (FRC). 3He-MRI and a same-breath 1H-MRI were acquired at FRC+1L and TLC. Percentage ventilated volumes (%VVs) were calculated for FRC+1L and TLC 3He-MRI. TLC-CT and registered FRC-CT were used to compute a surrogate ventilation map from voxel-wise intensity differences in Hounsfield unit values, which was thresholded at the 10th and 20th percentiles. For direct comparison of CT and 3He-MRI ventilation, FRC+1L and TLC 3He-MRI were registered to TLC-CT indirectly via the corresponding same-breath 1H-MRI data. For 3He-MRI and CT ventilation comparison, Dice similarity coefficients (DSCs) between the binary segmentations were computed.The median (range) of %VVs for FRC+1L and TLC 3He-MRI were 90.5 (54.9–93.6) and 91.8 (67.8–96.2), respectively (p = 0.018). For MRI versus CT ventilation comparison, statistically significant improvements in DSCs were observed for TLC 3He MRI when compared with FRC+1L, with median (range) values of 0.93 (0.86–0.93) and 0.86 (0.68–0.92), respectively (p = 0.017), for the 10–100th percentile and 0.87 (0.83–0.88) and 0.81 (0.66–0.87), respectively (p = 0.027), for the 20–100th percentile.Correlation of CT ventilation imaging and hyperpolarised gas MRI is sensitive to lung inflation level. For ventilation maps derived from CT acquired at FRC and TLC, a higher correlation with gas ventilation MRI can be achieved if the MRI is acquired at TLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call