Abstract
To realise the automated prediction of soft-tissue sarcoma (STS) grading and lung metastasis based on computed tomography (CT), T1-weighted (T1W) magnetic resonance imaging (MRI), and fat-suppressed T2-weighted MRI (FST2W) via the convolutional neural networks (CNN) model. MRI and CT images of 51 patients diagnosed with STS were analysed retrospectively. The patients could be divided into three groups based on disease grading: high-grade group (n=28), intermediate-grade group (n=15), low-grade group (n=8). Among these patients, 32 had lung metastasis, while the remaining 19 had no lung metastasis. The data were divided into the training, validation, and testing groups according to the ratio of 5:2:3. The receiver operating characteristic (ROC) curves and accuracy values were acquired using the testing dataset to evaluate the performance of the CNN model. For STS grading, the accuracy of the T1W, FST2W, CT, and the fusion of T1W and FST2W testing data were 0.86, 0.89, 0.86, and 0.85, respectively. In addition, Area Under Curve (AUC) were 0.96, 0.97, 0.97, and 0.94 respectively. For the prediction of lung metastasis, the accuracy of the T1W, FST2W, CT, and the fusion of T1W and FST2W test data were 0.92, 0.93, 0.88, and 0.91, respectively. The corresponding AUC values were 0.97, 0.96, 0.95, and 0.95, respectively. FST2W MRI performed best for predicting STS grading and lung metastasis. MRI and CT images combined with the CNN model can be useful for making predictions regarding STS grading and lung metastasis, thus providing help for patient diagnosis and treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.