Abstract

We present cross-talk calculations for a subdiffraction nanophotonic waveguide that consists of a colloidal quantum dot (QD) array 10 nm in diameter and compare the results with conventional continuous dielectric waveguides, assuming the same 10 nm size as well as a 200 nm cutoff diameter for guided mode. We find that the QD cascade has much lower cross talk than 10 nm dielectric waveguides at an identical separation >30 nm. Moreover, results for 200 nm dielectric waveguides at a 280 nm gap are comparable with those of QD structures spaced 110 nm apart. Hence the proposed QD device is potentially superior to conventional waveguides in achieving lower cross talk in the subdiffraction regime and provides a new route to achieving high-density photonic integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.