Abstract

AbstractPlanting patterns have significant effects on rice growth. Nonetheless, little is known about differences in annual crop yield and resource utilization among mechanized rice planting patterns in a rice–wheat cropping system. Field experiments were conducted from 2014 to 2017 using three treatments: pot seedling transplanting for rice and row sowing for wheat (PST-RS), carpet seedling transplanting for rice and row sowing for wheat (CST-RS) and row sowing for both crops (RS-RS). The results showed that, compared with RS-RS, PST-RS and CST-RS prolonged annual crop growth duration by 25–26 and 13–15 days, increased effective accumulated temperature by 399 and 212°C days and increased cumulative solar radiation by 454 and 228 MJ/m2 because of the earlier sowing of rice by 28 and 16 days in PST-RS and CST-RS, respectively. Compared with RS-RS, the annual crop yield of PST-RS and CST-RS increased by 3.1–3.8 and 2.0–2.6 t/ha, respectively, because of the increase in the number of spikelets/kernels per hectare, aboveground biomass, mean leaf area index and grain–leaf ratio. In addition, temperature production efficiency, solar radiation production efficiency and solar radiation use efficiency were higher in PST-RS, followed by CST-RS and RS-RS. These results suggest that mechanized rice planting patterns such as PST-RS increase annual crop production in rice–wheat cropping systems by increasing yield and solar energy utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call