Abstract

Genomic manipulation offers the possibility for novel therapies in lieu of medical interventions in use today. The ability to genetically restore missing inflammatory genes will have a monumental impact on our current immunotherapy treatments. This study compared the efficacy of two different genetic manipulation techniques: clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) transfection to adenoviral transduction to determine which method would provide the most transient and stable knockdown of myeloid differentiation primary response 88 (MyD88). MyD88 is a major regulator of nuclear factor kappa light chain enhancer of activated B cells (NFκB) pathway in Raw 264.7 macrophages. Following genetic manipulation, cells were treated for 24 h with Lipopolysaccharide (LPS) to stimulate the inflammatory pathway. Confirmation of knockdown was determined by western immunoblotting and quantification of band density. Both CRISPR/Cas9 and adenoviral transduction produced similar knockdown efficiency (~64% and 60%, respectively) in MyD88 protein 48 h post adenoviral transduction. NFκB phosphorylation was increased in CRISPR/Cas9-mediated MyD88 knockdown and control cells, but not in adenovirus-mediated MyD88 knockdown cells, following LPS administration. CRISPR/Cas9-mediated MyD88 knockdown macrophages treated with LPS for 24 h showed a 65% reduction in tumor necrosis factor alpha (TNFα) secretion, and a 67% reduction in interleukin-10 (IL-10) secretion when compared to LPS-stimulated control cells (P ≤ 0.01 for both). LPS did not stimulate TNFα or IL-10 secretion in adenovirus-mediated control or MyD88 knockdown cells. These data demonstrate that Raw 264.7 macrophages maintain responsiveness to inflammatory stimuli following CRISPR/Cas9-mediated reductions in MyD88, but not following adenovirus-mediated MyD88 knockdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.