Abstract
Cross-sectional and the empirical Bayes (EB) before–after are two of the most common methods for estimating crash modification factors (CMFs). The EB before–after method has now been accepted as one way of addressing the potential bias caused by the regression to the mean problem. However, sometimes before–after methods may not feasible because of the lack of data from before and after periods. In those cases, researchers rely on cross-sectional studies to develop CMFs. However, cross-sectional studies may provide biased CMFs through confounding. The propensity score (PS) matching method, along with cross-sectional regression models, is one of the methods that can be used to address confounding. Though PS methods are widely used in epidemiology and other studies, there are only a few studies that have used PS matching methods to estimate CMFs. The intent of this study is to evaluate and compare the performance of cross-sectional regression models using PS matching methods with the results from the EB and traditional cross-sectional methods. The comparisons were conducted using two carefully selected simulated datasets. The results indicate that optimal propensity score distance (PSD) matching with maximum variable ratio of 5 performed quite well compared with the EB before–after and the traditional cross-sectional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.