Abstract
BackgroundThe correct estimation of fibre orientations is a crucial step for reconstructing human brain tracts. Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques (bedpostx) is able to estimate several fibre orientations and their diffusion parameters per voxel using Markov Chain Monte Carlo (MCMC) in a whole brain diffusion MRI data, and it is capable of running on GPUs, achieving speed-up of over 100 times compared to CPUs. However, few studies have looked at whether the results from the CPU and GPU algorithms differ. In this study, we compared CPU and GPU bedpostx outputs by running multiple trials of both algorithms on the same whole brain diffusion data and compared each distribution of output using Kolmogorov-Smirnov tests.ResultsWe show that distributions of fibre fraction parameters and principal diffusion direction angles from bedpostx and bedpostx_gpu display few statistically significant differences in shape and are localized sparsely throughout the whole brain. Average output differences are small in magnitude compared to underlying uncertainty.ConclusionsDespite small amount of differences in output between CPU and GPU bedpostx algorithms, results are comparable given the difference in operation order and library usage between CPU and GPU bedpostx.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.