Abstract

Extensive numerical investigations are undertaken to analyze and compare, for the first time, the performance, techno-economy, and power consumption of three-level electrical Duobinary, optical Duobinary, and PAM-4 modulation formats as candidates for high-speed next-generation PONs supporting downstream 40 Gb/s per wavelength signal transmission over standard SMFs in C-band. Optimization of transceiver bandwidths are undertaken to show the feasibility of utilizing low-cost and band-limited components to support next-generation PON transmissions. The effect of electro-absorption modulator chirp is examined for electrical Duobinary and PAM-4. Electrical Duobinary and optical Duobinary are power-efficient schemes for smaller transmission distances of 10 km SMFs and optical Duobinary offers the best receiver sensitivity albeit with a relatively high transceiver cost. PAM-4 shows the best power budget and cost-efficiency for larger distances of around 20 km, although it consumes more power. Electrical Duobinary shows the best trade-off between performance, cost and power dissipation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call