Abstract

The transport of fine particulate organic matter (FPOM) in streams is an important process that links stream reaches, but until recently little was known about the distances traveled by fine particles in streams or the mechanisms governing their transport, deposition, and resuspension. Within the past decade, a number of studies have measured FPOM transport distances using either natural stream particles or a variety of artificial particles as FPOM surrogates. The purpose of our study was to compare estimates of FPOM transport distances in streams using: 1) radioactively labeled natural FPOM, and 2) corn pollen as an FPOM surrogate. We compared the particle types with simultaneous releases at 3 locations in Bloomington Creek, Idaho, and in a streamside flume in Pennsylvania. Mean transport distances in the stream and in the flume ranged from 49 to 637 m for corn pollen, compared with 23 to 1164 m for natural FPOM. Particle deposition velocities, which adjust for the effects of water depth and velocity on ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.