Abstract

Boron-10-containing positron emission tomography (PET) radio-tracer, 18F-FBPA, has been used to evaluate the feasibility and treatment outcomes of Boron neutron capture therapy (BNCT). The clinical use of PET/MR is increasing and reveals its benefit in certain applications. However, the PET/CT is still the most widely used modality for daily PET practice due to its high quantitative accuracy and relatively low cost. Considering the different attenuation correction maps between PET/CT and PET/MR, comparison of derived image features from these two modalities is critical to identify quantitative imaging biomarkers for diagnosis and prognosis. This study aimed to investigate the comparability of image features extracted from 18F-FBPA PET/CT and PET/MR. A total of 15 patients with malignant brain tumor who underwent 18F-FBPA examinations using both PET/CT and PET/MR on the same day were retrospectively analyzed. Overall, four conventional imaging characteristics and 449 radiomic features were calculated from PET/CT and PET/MR, respectively. A linear regression model and intraclass correlation coefficient (ICC) were estimated to evaluate the comparability of derived features between two modalities. Features were classified into strong, moderate, and weak comparability based on coefficient of determination (r2) and ICC. All of the conventional features, 81.2% of histogram, 37.5% of geometry, 51.5% of texture, and 25% of wavelet-based features, showed strong comparability between PET/CT and PET/MR. With regard to the wavelet filtering, radiomic features without filtering (61.2%) or with low-pass filtering (59.2%) along three axes produced strong comparability between the two modalities. However, only 8.2% of the features with high-pass filtering showed strong comparability. The linear regression models were provided for the features with strong and moderate consensus to interchange the quantitative features between the PET/CT and the PET/MR. All of the conventional and 71% of the radiomic (mostly histogram and texture) features were sufficiently stable and could be interchanged between 18F-FBPA PET with different hybrid modalities using the proposed equations. Our findings suggested that the image features high interchangeability may facilitate future studies in comparing PET/CT and PET/MR.

Highlights

  • Boron neutron capture therapy (BNCT) is a type of targeted radiotherapy

  • Due to the high local tumor control rate, BNCT is considered a promising treatment for malignant tumors [3]

  • Fifteen patients were included with the confirmation of the following conditions: (1) pathological diagnosis of primary or recurring malignant tumors; (2) at least one detectable lesion identified in the positron emission tomography (PET) image; and (3) acceptable PET image quality evaluated by nuclear physicians

Read more

Summary

Introduction

Boron neutron capture therapy (BNCT) is a type of targeted radiotherapy. BNCT shows promising results in treating lung cancer, recurrent head and neck cancer, sarcomas, Biomolecules 2021, 11, 1659. Biomolecules 2021, 11, 1659 and high grade brain tumors [1,2]. Due to the high local tumor control rate, BNCT is considered a promising treatment for malignant tumors [3]. The high tumor specificity of BPA is because of the selective transport by L-type amino acid transporter 1, which is upregulated in cancers [4]. An effective BNCT for cancer treatment requires a sufficient tumor-tonormal tissue ratio (T/N ratio, greater than 2.5) of BPA [8].

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.