Abstract

IntroductionThis study investigated the surface, fractured structure, and physicochemical properties related to cyclic fatigue in various nickel-titanium (NiTi) files. MethodsAmong a total of 10 groups of NiTi files, conventional NiTi files (ProFile [Dentsply Maillefer, Ballaigues, Switzerland] and K3 [SybronEndo, Orange, CA]) and new-generation NiTi files (ProFile Vortex [PV; Tulsa Dental Specialties, Tulsa, OK], Vortex Blue [VB; Tulsa Dental Specialties], and K3 XF [XF; SybronEndo, Orange, CA]) with the same tip diameter (ISO size 25) and 2 types of taper (0.04 and 0.06) were used in this study. Scanning electron microscopy of the file surface structure, differential scanning calorimetry, and cyclic fatigue resistance tests were conducted. ResultsMany mechanical grooves were recognized on the file surface. The surface in the ProFile group was extremely smooth compared with that observed for the other files. Many shallow hollows besides mechanical grooves were noted on the surface in the XF group. A smooth curve was observed in the ProFile, K3, and PV groups. Defined peaks in differential scanning calorimetry were observed in the VB and XF groups. The 0.04 taper files exhibited a statistically higher number of cycles to fracture than the 0.06 taper files in all groups (P < .05). Cracks along the mechanical grooves were observed in the NiTi files, with the exception of the XF group. The start of cracking was detected at U-shape sites in the ProFile group, the cutting edge in the PV and VB groups, and radial islands in the K3 and XF groups. ConclusionsThe present findings suggest that new-generation NiTi files are not necessarily improved compared with conventional files.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.