Abstract

Estimation of ground-motion amplitudes of different hazard levels is of paramount importance in planning of urban development of any metropolis. Such estimation can be computed through a probabilistic seismic hazard analysis (PSHA). This paper concentrates on the PSHA of an area located in Shiraz city, southern Iran. The area includes whole of Shiraz city (i.e., one of the largest and most populous cities of Iran) and its outskirts. Conventional and Monte Carlo simulation-based approaches are utilized to perform the PSHA of the studied area. Two areal seismic source models are delineated, and thence seismicity parameters of all zones associated with their corresponding uncertainties are computed. Uncertainties in ground-motion prediction are accounted for via three ground-motion prediction equations (GMPEs) within the logic tree framework. These GMPEs are applied to estimate bedrock ground shaking (Vs30 = 760 m/s) for several return periods (i.e., 75, 475, 975, and 2475 years). In general, the results of the two abovementioned PSHA approaches show relatively similar results. However, the Monte Carlo simulation-based approach overpredicts bedrock spectral accelerations at periods of 0.4–2.5 s compared to the conventional PSHA approach for return periods of 475, 975, and 2475 years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.