Abstract

In the field phases of the European Tracer EXperiment (ETEX), an inert tracer was released for 12 h into the atmosphere and samples taken at several locations downwind. During the same time, several Constant Volume Balloons (CVB) (10 and 6 for ETEX first and second release, respectively) were launched into different altitudes and followed as far as 21–188 km, to indicate the initial dispersion directions of the tracer puff. A model simulating the CVB behaviour in hydrostatic meso-scale model forecasts is applied to ETEX data to demonstrate its capability to predict the tracer puff mean axis over long distances (−2000 km). CVB model results are first compared to air parcels trajectories and 2D (i.e. isentropic, isobaric and isodensity) trajectories. Then they are compared to the measured CVB trajectories and finally to the tracer puff trajectories. As expected, the CVB model and isodensity model trajectories are found to be identical. The 16 CVBs calculated trajectories nearly overlap the real ones over 21–188 km with mean absolute horizontal transport deviations less than 20 km (average value of 8.2 km). The corresponding relative transport deviations are less than 45% with an average value of 20.6%. Better predictions are obtained for the ETEX second release. During the 60 h following ETEX’s first release start, the simulated CVBs are mainly found in the area of the maximum surface concentrations of the released tracer, up to 2000 km. Up to 36 h after ETEX second tracer release start, the simulated CVB trajectories predict well the mean axis of the tracer puff, but failed later.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call