Abstract

SLURP-1 is a three-finger human protein targeting nicotinic acetylcholine receptors (nAChRs). The recombinant forms of SLURP-1 produced in E. coli differ in added fusion fragments and in activity. The closest in sequence to the naturally occurring SLURP-1 is the recombinant rSLURP-1, differing by only one additional N-terminal Met residue. sSLURP-1 can be prepared by peptide synthesis and its amino acid sequence is identical to that of the natural protein. In view of recent NMR analysis of the conformational mobility of rSLURP-1 and cryo-electron microscopy structures of complexes of α-bungarotoxin (a three-finger snake venom protein) with Torpedo californica and α7 nAChRs, we compared conformations of sSLURP-1 and rSLURP-1 by Raman spectroscopy and CD-controlled thermal denaturation, analyzed their competition with α-bungarotoxin for binding to the above-mentioned nAChRs, compared the respective receptor complexes with computer modeling and compared their inhibitory potency on the α9α10 nAChR. The CD revealed a higher thermostability of sSLURP-1; some differences between sSLURP-1 and rSLURP-1 were observed in the regions of disulfides and tyrosine residues by Raman spectroscopy, but in binding, computer modeling and electrophysiology, the proteins were similar. Thus, sSLURP-1 and rSLURP-1 with only one additional Met residue appear close in structure and functional characteristics, being appropriate for research on nAChRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call