Abstract

In this paper the rather complex 3D fatigue crack growth behaviour in a SEN-specimen under anti-plane shear loading is investigated by the aid of the programme ADAPCRACK3D and by application of a recently developed 3D fracture criterion. It will be shown that the computationally simulated results of fatigue crack growth in the FE-model of the specimen are in good agreement with experimental findings for the development of two anti-symmetric cracks, which originate from the two crack front corner points, that is where the crack front intersects the two free side surfaces of the laboratory SEN test-specimens. Consequently, also for this case with a rather complex 3D crack growth of two anti-symmetric cracks, the functionality of the ADAPCRACK3D-programme and the validity of the proposed 3D fracture criterion can be stated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.