Abstract

Characterization of complex systems such as colloids calls for the combination of a multitude of analytical methods. This work reviews some of the most common techniques used to gain information on the particle size distribution of a colloidal suspension. Fractionation by filtration or centrifugation is discussed as well as flow field fractionation and electron- and atomic-force microscopy. Since these delicately balanced systems are to be characterized with as little perturbation as possible, this work lays special emphasis on non-invasive methods such as light scattering (photon correlation spectroscopy (PCS), static light scattering: single particle counter) and laser induced breakdown detection, an in-situ method, which opens up a wide operational dynamic range, covering three orders of magnitude in size (5–1000 nm) and seven orders of magnitude in particle concentration (1 ppt-several ppm). Advantages and shortcomings of each technique are illuminated by means of an example, the characterization of ThOn(OH)m-colloids in over-saturated thorium solutions. Results obtained by atomic force microscopy (AFM)-, scanning electron microscopy (SEM)-, transmission electron microscopy (TEM)-, PCS- and laser induced breakdown detection (LIBD) measurements are compared and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.