Abstract
ABSTRACTThis research investigates the use of a meshless smoothed particle hydrodynamics (SPH) method for the prediction of failure in an adhesively bonded single lap joint. A number of issues concerning the SPH based finite element modelling of single lap joints are discussed. The predicted stresses of the SPH finite element model are compared with the results of a cohesive zone based finite element model. Crack initiation and crack propagation in the adhesive layer are also studied. The results show that the peel stresses predicted by the SPH finite element model are higher and the shear stresses are lower than those predicted by the cohesive zone finite element model. The crack initiation and propagation response of the two models is similar, however, the SPH finite element model predicted a lower failure load than the cohesive zone finite element model. It is concluded that the current implementation of SPH method is a promising method for modelling cohesive failure in bonded joins but requires further development to allow for interfacial crack growth and better stress prediction under tensile loading to compete with existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.