Abstract
Two kinds of CoCrFeNi high entropy alloy coatings were prepared by normal laser cladding (N-) and high-speed laser cladding (HS-), respectively. The comparative analyses of crystallographic orientation distribution, microstructure, microhardness, wear resistance and corrosion resistance of both coatings were conducted. The results show that the phase structures of HS-CoCrFeNi and N–CoCrFeNi coatings are single FCC solid solutions. The dendrite size of HS-CoCrFeNi coating is only half of that of N–CoCrFeNi coating. The microhardness of HS-CoCrFeNi coating (380 HV0.2) is about 2.3 times that of N–CoCrFeNi coating (165 HV0.2), due to the combined effect of grain refinement, dispersion strengthening and dislocation strengthening. The wear resistance and corrosion resistance of HS-CoCrFeNi coating are better than N–CoCrFeNi coating. With the increase of friction speed, the same wear mechanism of the two coatings is obtained, changing from abrasive wear to adhesive wear and fatigue wear. High-speed laser cladding is a promising technology to promote the development and application of high entropy alloys in the industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.