Abstract
Reduced activation ferritic-martensitic steels (RAFM), e.g. Eurofer 97, are envisaged in future fusion technology as structural material, which will be in direct contact with a flowing liquid lead–lithium melt serving as breeder material. Aluminum-based barrier layers had proven their ability to protect the structural material from corrosion attack in flowing Pb–15.7Li and to reduce tritium permeation into the coolant.Coming from scales produced by hot dipping aluminization (HDA), the development of processes based on electrochemical methods to produce defined aluminum-based scales on RAFM steels gained attention in research during the last years. Two different electrochemical processes are proposed: The first one, referred to as ECA process, is based on the electrodeposition of aluminum from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids.All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX-process will be presented and occurring development needs for the future will be discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.