Abstract

Skin, as the outermost layer of the body, is often in contact with bacteria, germs and viruses because of its most external position. According to statistics from the 2009 Indonesian Health Profile, skin illness is the third most common ailment seen in outpatient settings across the country's hospitals. Therefore, maintaining healthy skin is important because it protects the body's internal organs from injury and attack by pathogens. The development of image classification, such as the classification of skin diseases, has become a focus in the health sector. This research analyses the performance of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) in web-based skin disease classification and overcomes the problem of imbalanced training data. With data augmentation and preprocess, this research improves data generalization and compares performance metrics such as Recall, Accuracy, and F1 Score. The results show that the average accuracy of CNN is 83.8%, while SVM reaches 81%. Although both models have high metrics for the normal class, other more complicated classes can only be handled by CNN with a value of more than 0.9. Apart from that, the CNN method also provides a higher Confidence Score than SVM, as well as a faster execution time. In conclusion, the CNN method is superior and recommended for skin disease classification based on web applications based on various performance test results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.