Abstract

Artificial neural networks, such as the multilayer perceptron (MLP), have been increasingly employed in various applications. Recently, deep neural networks, specially convolutional neural networks (CNN), have received considerable attention due to their ability to extract and represent high-level abstractions in data sets. This article describes a vision inspection system based on deep learning and computer vision algorithms for detection of algae in underwater pipelines. The proposed algorithm comprises a CNN or a MLP network, followed by a post-processing stage operating in spatial and temporal domains, employing clustering of neighboring detection positions and a region interception framebuffer. The performances of MLP, employing different descriptors, and CNN classifiers are compared in real-world scenarios. It is shown that the post-processing stage considerably decreases the number of false positives, resulting in an accuracy rate of 99.39%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.