Abstract

BackgroundShiga toxin (Stx) producing Escherichia coli (E. coli) (STEC) is the most frequent cause of diarrhoea-positive haemolytic uraemic syndrome (D + HUS) in humans. In 2011, a huge outbreak with an STEC O104:H4 strain in Germany highlighted the limited possibilities for causative treatment of this syndrome. The responsible STEC strain was found to combine Stx production with adherence mechanisms normally found in enteroaggregative E. coli (EAEC). Pathotypes of E. coli evolve and can exhibit different adhesion mechanisms. It has been shown previously that neonatal gnotobiotic piglets are susceptible for infection with STEC, such as STEC O157:H7 as well as for EAEC, which are considered to be the phylogenetic origin of E. coli O104:H4. This study was designed to characterise the host response to infection with the STEC O104:H4 outbreak strain in comparison to an STEC O157:H7 isolate by evaluating clinical parameters (scoring) and markers of organ dysfunction (biochemistry), as well as immunological (flow cytometry, assessment of cytokines/chemokines and acute phase proteins) and histological alterations (light- and electron microscopy) in a gnotobiotic piglet model of haemolytic uraemic syndrome.ResultsWe observed severe clinical symptoms, such as diarrhoea, dehydration and neurological disorders as well as attaching-and-effacing lesions (A/E) in the colon in STEC O157:H7 infected piglets. In contrast, STEC O104:H4 challenged animals exhibited only mild clinical symptoms including diarrhoea and dehydration and HUS-specific/severe histopathological, haematological and biochemical alterations were only inconsistently presented by individual piglets. A specific adherence phenotype of STEC O104:H4 could not be observed. Flow cytometric analyses of lymphocytes derived from infected animals revealed an increase of natural killer cells (NK cells) during the course of infection revealing a potential role of this subset in the anti-bacterial activity in STEC disease.ConclusionsUnexpectedly, E. coli O104:H4 infection caused only mild symptoms and minor changes in histology and blood parameters in piglets. Outcome of the infection trial does not reflect E. coli O104:H4 associated human disease as observed during the outbreak in 2011. The potential role of cells of the innate immune system for STEC related disease pathogenesis should be further elucidated.

Highlights

  • Shiga toxin (Stx) producing Escherichia coli (E. coli) (STEC) is the most frequent cause of diarrhoeapositive haemolytic uraemic syndrome (D + Haemolytic uraemic syndrome (HUS)) in humans

  • Comparison of clinical and biochemical alterations in piglets infected with Shiga Toxin E. coli (STEC) O104:H4 and STEC O157:H7 While animals in the control group stayed healthy, all animals infected with E. coli O104:H4 showed a transient reduction of milk intake

  • One animal infected with E. coli O157:H7 survived until the end of trial but was continuously dehydrated due to diarrhoea

Read more

Summary

Introduction

Shiga toxin (Stx) producing Escherichia coli (E. coli) (STEC) is the most frequent cause of diarrhoeapositive haemolytic uraemic syndrome (D + HUS) in humans. The responsible STEC strain was found to combine Stx production with adherence mechanisms normally found in enteroaggregative E. coli (EAEC). This study was designed to characterise the host response to infection with the STEC O104:H4 outbreak strain in comparison to an STEC O157:H7 isolate by evaluating clinical parameters (scoring) and markers of organ dysfunction (biochemistry), as well as immunological (flow cytom‐ etry, assessment of cytokines/chemokines and acute phase proteins) and histological alterations (light- and electron microscopy) in a gnotobiotic piglet model of haemolytic uraemic syndrome. Shiga toxin (Stx) producing Escherichia coli (E. coli) (STEC) is a frequent cause of D + HUS in humans. Subsequent, OMVs and their contents can be internalised to human intestinal epithelial cells (IEC) [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call