Abstract

Albeit differences in climbing-specific strength of the forearms have been demonstrated between lead and boulder climbers, little is known about the potential differences in force and power output of the upper body pulling-apparatus between disciplines. The aim of this study was to compare the climbing-specific upper-body strength and finger flexor endurance between lead and boulder climbers, as well as to examine the relative utilization of force when testing on a ledge hold compared to a jug hold. Sixteen boulder climbers (red-point climbing grade 17.9 ± 3.3) and fifteen lead climbers (red-point climbing grade 20.5 ± 3.5) performing on an advanced level volunteered for the study. Peak force, average force and rate of force development (RFD) were measured during an isometric pull-up, average velocity in dynamic pull-up, and finger flexor endurance in an intermittent test to fatigue. The isometric pull-up was performed on a ledge hold (high finger strength requirements) and on a jug hold (very low finger strength requirements). Boulder climbers demonstrated a higher maximal and explosive strength in all strength and power measurements (26.2–52.9%, ES = 0.90–1.12, p = 0.006–0.023), whereas the finger flexor endurance test showed no significant difference between the groups (p = 0.088). Both groups were able to utilize 57–69% of peak force, average force and RFD in the ledge condition compared to the jug condition, but the relative utilization was not different between the groups (p = 0.290–0.996). In conclusion, boulder climbers were stronger and more explosive compared to lead climbers, whereas no differences in finger flexor endurance were observed. Performing climbing-specific tests on a smaller hold appears to limit the force and power output equally between the two groups.

Highlights

  • Sport climbing and bouldering have greatly increased in the last decades [1]

  • The climbers were tested for maximal isometric pull-up strength (average rate of force development (RFDavg), Peak force (Fpeak) and average force (Favg)), explosive dynamic pull-up strength (average velocity (Vavg)), and finger flexor endurance during one laboratory session

  • Boulder climbers demonstrated 28.7–52.9% higher Fpeak, Favg and RFDavg than lead climbers using the 23 mm ledge and the jug (p = 0.013–0.015; see Table 2)

Read more

Summary

Introduction

Sport climbing and bouldering have greatly increased in the last decades [1]. Competitive climbing consist of three disciplines; lead climbing, bouldering and speed climbing. Lead climbing and bouldering currently are the two most practiced disciplines [2]. Indoor bouldering routes typically consist of less than eight-to-ten climbing moves and is performed without ropes on a less than five-meter high wall [2, 3].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.