Abstract
Abstract Cleaning power of different surfactants was investigated using a model detergent system consisting of a PET film and stearic acid. Surfactants used were alcohol ethoxylates (AE, C12) and methyl ester ethoxylates (MEE, C12) with different ethylene oxide (EO) chain lengths. For comparison with these nonionic surfactants, anionic surfactant, sodium alkyl sulfate (AS, C12), was chosen. After depositing stearic acid, the PET film was cleaned in aqueous surfactant solutions by applying stirring as a mechanical action for soil removal. The amounts of stearic acid deposited on the PET film before and after the cleaning were obtained by binary processing of microscopic images of the PET film surface, from which the removal efficiency was calculated. The surface tension γ and the contact angle on the PET film θ of the surfactant solution were measured by the pendant drop and the sessile drop method, respectively. For the nonionic surfactants, critical micelle concentration, cmc, and γ and θ above cmc decreased with decreasing EO chain length. The removal efficiency of stearic acid increased with increasing surfactant concentration and further increase in the removal above cmc was observed in the cases of AE and MEE with EO chain length of 10. The removal efficiencies obtained in all systems had good relation with both γ and θ, indicating that the penetration of the surfactant solution between stearic acid and the PET film in the contact zone was a dominant factor in the soil removal in the present system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.