Abstract

BackgroundFlowers of Chrysanthemum × morifolium Ramat. are used as tea in traditional Chinese cuisine. However, with increasing population and urbanization, water and land availability have become limiting for chrysanthemum tea production. Hydroponic culture enables effective, rapid nutrient exchange, while requiring no soil and less water than soil cultivation. Hydroponic culture can reduce pesticide residues in food and improve the quantity or size of fruits, flowers, and leaves, and the levels of active compounds important for nutrition and health. To date, studies to improve the yield and active compounds of chrysanthemum have focused on soil culture. Moreover, the molecular effects of hydroponic and soil culture on chrysanthemum tea development remain understudied.ResultsHere, we studied the effects of soil and hydroponic culture on yield and total flavonoid and chlorogenic acid contents in chrysanthemum flowers (C. morifolium ‘wuyuanhuang’). Yield and the total flavonoids and chlorogenic acid contents of chrysanthemum flowers were higher in the hydroponic culture system than in the soil system. Transcriptome profiling using RNA-seq revealed 3858 differentially expressed genes (DEGs) between chrysanthemum flowers grown in soil and hydroponic conditions. Gene Ontology (GO) enrichment annotation revealed that these differentially transcribed genes are mainly involved in “cytoplasmic part”, “biosynthetic process”, “organic substance biosynthetic process”, “cell wall organization or biogenesis” and other processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed enrichment in “metabolic pathways”, “biosynthesis of secondary metabolites”, “ribosome”, “carbon metabolism”, “plant hormone signal transduction” and other metabolic processes. In functional annotations, pathways related to yield and formation of the main active compounds included phytohormone signaling, secondary metabolism, and cell wall metabolism. Enrichment analysis of transcription factors also showed that under the hydroponic system, bHLH, MYB, NAC, and ERF protein families were involved in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction.ConclusionsHydroponic culture is a simple and effective way to cultivate chrysanthemum for tea production. A transcriptome analysis of chrysanthemum flowers grown in soil and hydroponic conditions. The large number of DEGs identified confirmed the difference of the regulatory machinery under two culture system.

Highlights

  • Flowers of Chrysanthemum × morifolium Ramat. are used as tea in traditional Chinese cuisine

  • When harvested for comparison (Fig. 1D, E), the average number and dry weight of hydroponically cultivated chrysanthemum flowers were greater than field-cultivated ones (41.33 ± 11.64 flowers per plant, and 20.25 ± 5.70 g dry weight per flower for hydroponic cultivation versus 25.67 ± 3.43 flowers per plant, and 12.58 ± 1.68 g dry weight for soil cultivated flowers, meaning increased production by up to 37.89% with hydroponic cultivation)

  • Yield and quality of chrysanthemum flowers grown under a hydroponic culture system were higher than those grown in a soil system

Read more

Summary

Introduction

Flowers of Chrysanthemum × morifolium Ramat. are used as tea in traditional Chinese cuisine. Many studies have focused on different approaches to improve chrysanthemum yield and quality, including screening different varieties and developing new germplasm [2, 5, 11, 12], adjusting fertilizer ratios [13,14,15], testing the effect of abiotic stress [16], and examining the effect of different extraction methods on the activity of active compounds [3, 6] These studies did not address issues associated with pressures on land use, or solve fundamental problems of soil and other aspects of the growth environment

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.