Abstract

Nonhuman primates are important preclinical models of retinal diseases because they uniquely possess a macula similar to humans. Ocular imaging technologies such as spectral-domain optical coherence tomography (SD-OCT) allow noninvasive, in vivo measurements of chorioretinal layers with near-histological resolution. However, the boundaries are based on differences in reflectivity, and detailed correlations with histological tissue layers have not been explored in rhesus macaques, which are widely used for biomedical research. Here, we compare the macular anatomy and thickness measurements of chorioretinal layers in rhesus macaque eyes using SD-OCT and high-resolution histological sections. Images were obtained from methylmethacrylate-embedded histological sections of 6 healthy adult rhesus macaques, and compared with SD-OCT images from 6 age-matched animals. Thicknesses of chorioretinal layers were measured across the central 3 mm macular region using custom semi-automated or manual software segmentation, and compared between the two modalities. We found that histological sections provide better distinction between the ganglion cell layer (GCL) and inner plexiform layer (IPL) than SD-OCT imaging. The first hyperreflective band between the external limiting membrane (ELM) and retinal pigment epithelium (RPE) appears wider on SD-OCT than the junction between photoreceptor inner and outer segments seen on histology. SD-OCT poorly distinguishes Henle nerve fibers from the outer nuclear layer (ONL), while histology correctly identifies these fibers as part of the outer plexiform layer (OPL). Overall, the GCL, inner nuclear layer (INL), and OPL are significantly thicker on histology, especially at the fovea; while the ONL, choriocapillaris (CC), and outer choroid (OC) are thicker on SD-OCT. Our results show that both SD-OCT and high-resolution histological sections allow reliable measurements of chorioretinal layers in rhesus macaques, with distinct advantages for different sublayers. These findings demonstrate the effects of tissue processing on chorioretinal anatomy, and provide normative values for chorioretinal thickness measurements on SD-OCT for future studies of disease models in these nonhuman primates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.