Abstract

The aim of this study was to synthesize Zinc oxide (ZnO) and magnetite ıron oxide (Fe3O4) nanoparticles utilizing a precipitation method, employing plant extracts from Ocimum basilica(1), Cinnamomum zeylanicum(2), Lactarius salmonicolor(3) and Paeonia kesrouanensis(4) as reduction and stabilizing agents. Additionally, the antimicrobial activity of these nanoparticles against both gram-positive (S. aureus, ATCC 25923) and gram-negative (E. coli, ATCC 25922; P. aeroginosa, PAO1), bacteria as well as fungus (C. albicans 90028) was evaluated. The nanoparticles (NPs) were characterised by various analyses, including TEM, SEM, XRD, FTIR, DSL, and zeta potential. Based on the TEM image, the ZnONPs exhibited a cluster of flower-like structures, whereas the Fe3O4NPs displayed a spherical shape with a varying size distribution. The zeta potential values for ZnO NPs ranged from -5.35 to -16.9, while for Fe3O4NPs ranged from -7.43 to -20.7. All ZnO nanoparticles exhibited antimicrobial activity exclusively against the S. aureus strain, whereas Fe3O4NPs did not demonstrate any antibacterial effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.