Abstract

SummaryBackgroundWe examined the cerebrospinal fluid (CSF) markers of subarachnoid hemorrhage (SAH)-induced and idiopathic normal pressure hydrocephalus (INPH) to investigate the pathophysiology and mechanism of communicating hydrocephalus compared to obstructive hydrocephalus.Material/MethodsWe obtained CSF samples from 8 INPH, 10 SAH-induced hydrocephalus, and 6 unmatched patients with non-hemorrhagic obstructive hydrocephalus during their ventriculoperitoneal shunt operations. Transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and total tau in the CSF were analyzed via enzyme-linked immunosorbent assay.ResultsThe mean VEGF levels in the CSF of patients with SAH-induced hydrocephalus, INPH, and obstructive hydrocephalus were 239±131, 239±75, and 163±122 pg/mL, respectively. The total tau concentrations in the CSF of the groups were 1139±1900, 325±325, and 1550±2886 pg/mL, respectively. TNF-α values were 114±34, 134±38, and 55±16 pg/mL, respectively. TGF-β1 values were 953±430, 869±447, and 136±63 pg/mL, respectively. A significant difference in TNF-α and TGF-β1 levels was observed only between SAH-induced and chronic obstructive hydrocephalus, and between INPH and chronic obstructive hydrocephalus (p<0.01).ConclusionsNo significant differences in the 4 CSF biomarker levels were observed between INPH and SAH-induced hydrocephalus, whereas CSF TNF-α and TGF-β1 levels were increased compared to those in patients with chronic obstructive hydrocephalus. Post-SAH hydrocephalus and INPH are probably more destructive to neural tissues, and then stimulate the inflammatory reaction and healing process, compared with obstructive hydrocephalus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call