Abstract

The objective of this study was to purify cells in the Leydig cell lineage following regeneration after ethane dimethanesulfonate (EDS) treatment and compare their steroidogenic capacity. Regenerated progenitor (RPLCs), immature (RILCs), and adult Leydig cells (RALCs) were isolated from testes 21, 28 and 56 days after EDS treatment respectively. Production rates for androgens including androsterone and 5α-androstane-17β, 3α-diol (DIOL), testosterone and androstenedione were measured in RPLCs, RILCs and RALCs in media after 3-h in vitro culture with 100 ng/ml LH. Steady-state mRNA levels of steroidogenic enzymes and their activities were measured in freshly isolated cells. Compared to adult Leydig cells (ALCs) isolated from normal 90-day-old rat testes, which primarily produce testosterone (69.73%), RPLCs and RILCs primarily produced androsterone (70.21%) and DIOL (69.79%) respectively. Leydig cells isolated from testes 56 days post-EDS showed equivalent capacity of steroidogenesis to ALCs and primarily produced testosterone (72.90%). RPLCs had cholesterol side-chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1 and 17α-hydroxylase but had almost no detectable 17β-hydroxysteroid dehydrogenase 3 and 11β-hydroxysteroid dehydrogenase 1 activities, while RILCs had increased 17β-hydroxysteroid dehydrogenase 3 and 11β-hydroxysteroid dehydrogenase 1 activities. Because RPLCs and RILCs had higher 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase activities they produced mainly 5α-reduced androgens. Real-time PCR confirmed the similar trends for the expressions of these steroidogenic enzymes. In conclusion, the purified RPLCs, RILCs and RALCs are similar to those of their counterparts during rat pubertal development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.