Abstract

Several methods have been described to enhance antibody-dependent cellular cytotoxicity (ADCC) using different host cells that produce antibody with reduced levels of fucose on their carbohydrates. We compared the suitability of these methods for the serum-free fed-batch production of antibody for clinical trials and commercial uses. Recombinant anti-human CD20 chimeric IgG1-producing clones were established from host-cells that have been shown to produce more than 90% fucose-negative antibody. The cell lines were a FUT8 (alpha-1,6-fucosyltransferase) knockout Chinese hamster ovary (CHO) cell line, Ms704, and two Lens culinaris agglutinin (LCA)-resistant cell lines, one derived from a variant CHO line, Lec13 and the other from a rat hybridoma cell line, YB2/0. The amount of fucose-negative antibody produced by Lec13 and YB2/0 significantly decreased with the culture. The increase in fucosylation was due to remaining synthesis of GDP-fucose via de novo pathway for the CHO line and the elevation of FUT8 expression by the YB2/0 cells. In contrast, Ms704 cells stably produced fucose-negative antibody with a consistent carbohydrate structure until the end of the culture. The productivity of the Ms704 cells reached 1.76 g/L with a specific production rate (SPR) of 29 pg/cell/day for 17 days in serum-free fed-batch culture using a 1 L spinner bioreactor. Our results demonstrate that FUT8 knockout has the essential characteristics of host cells for robust manufacture of fucose-negative therapeutic antibodies with enhanced ADCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call