Abstract
The present study examines whether chromosomal derived forms of therapeutic genes can be delivered to brain following intravenous administration. The brain expression of a rat tyrosine hydroxylase (TH) cDNA is compared to the brain expression of a plasmid DNA encoding the 18 kb rat TH gene. TH gene expression is measured in cell culture and in vivo in brain in experimental Parkinson's disease (PD). A total of four eukaryotic expression plasmids encoding rat TH were engineered wherein the size of the TH expression cassette ranged from 1.5 kb, in the case of the cDNA form of the gene, to 17.5 kb, in the case of the largest size genomic construct. The TH expression plasmids were delivered to either cultured cells or to rat brain in vivo with Trojan horse liposomes (THLs), which target the non-viral plasmid DNA to cells via cell membrane receptors. The pattern of TH gene expression in cell culture and in vivo was similar: the cDNA form of the TH gene was fast-acting with short duration of action, and the genomic form of the TH gene was slow-acting with longer duration of action. The most sustained replacement of striatal TH enzyme activity in experimental PD was produced by combination gene therapy where both the cDNA and the genomic forms of the TH gene were administered simultaneously. Eukaryotic expression plasmids encoding genomic forms of therapeutic genes, as large as 18 kb, can be successfully incorporated in THLs and delivered to brain following intravenous administration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.