Abstract

Abstract In this study, iron oxides immobilized onto silica and alumina granular carriers in a fluidized-bed reactor were applied as silica granule (SG) and alumina granule (AG) catalysts, respectively; the SG and AG catalysts were used to explore the catalytic decomposition of H2O2. Effects of H2O2 concentration and temperature on the oxidation of aniline were determined to compare the reactive efficiencies of the SG and AG catalysts. Results showed that H2O2 decomposition could be efficiently catalyzed by the SG and AG catalysts. Degradation rates of aniline increased with increasing H2O2 concentration and temperature in both catalyst systems. The AG catalyst (smaller particle size) had more surface sites for precipitation of iron oxide than the SG catalyst (larger particle size). Consequently, in the initial stages of the reaction, hydroxyl radicals (•OH) were generated more rapidly with the AG catalyst than with the SG catalyst and the degradation of aniline by the AG catalyst was faster than that by ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call