Abstract

Although severely affected by the angle dependency, carotid artery peak systolic velocity measurements are widely used for assessment of stenosis. In this study, blood peak systolic velocities in the common and internal carotid arteries of both healthy volunteers and patients with internal carotid artery stenosis were measured by two vector Doppler (VD) methods and compared with measurements obtained with the conventional spectral Doppler approach. Although the two VD techniques were completely different (using the transmission of focused beams and plane waves, respectively), the measurement results indicate that these techniques are nearly equivalent. The peak systolic velocities measured in 22 healthy common carotid arteries by the two VD techniques were very close (according to Bland–Altman analysis, the average difference was 3.2%, with limits of agreement of ±8.6%). Application of Bland–Altman analysis to comparison of either VD technique with the spectral Doppler method provided a 21%–25% average difference with ±13%–15% limits of agreement. Analysis of the results obtained from 15 internal carotid arteries led to similar conclusions, indicating significant overestimation of peak systolic velocity with the spectral Doppler method. Inter- and intra-operator repeatability measurements performed in a group of 8 healthy volunteers provided equivalent results for all of the methods (coefficients of variability in the range 2.7%–6.9%), even though the sonographers were not familiar with the VD methods. The results of this study suggest that the introduction of vector Doppler methods in commercial machines may finally be considered mature and capable of overcoming the angle-dependent overestimation typical of the standard spectral Doppler approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.