Abstract
Carbon capture from conventional power cycles is accompanied by a significant loss of efficiency. One process concept with a potential for better performance is chemical-looping combustion (CLC). CLC uses a metal oxide to oxidize the fuel, and the reduced metal is then re-oxidized in a second reactor with air. The combustion products CO 2 and water remain unmixed with nitrogen, thereby avoiding the need for energy intensive air separation. In this paper, the performance of various configurations of CLC used in integrated gasification combined cycle power plants (CLC-IGCC) are analyzed and compared to a conventional IGCC design with pre-combustion carbon capture by physical absorption. The analysis is based on process simulation using Aspen Plus and GateCycle. Key design parameters are varied, and the results are interpreted using exergy analysis. The CLC-IGCC offers the advantages of higher plant efficiency and more complete carbon capture. The efficiency is very sensitive to changes in the gas turbine inlet temperature for both the CLC and the conventional IGCC designs. The development of oxygen carrier particles with a high thermal stability is therefore crucial for capitalizing on the potential efficiency advantage of CLC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.