Abstract

For more than 100 years, one of the central concepts in statistical mechanics has been the microcanonical ensemble, which provides a way of calculating the thermodynamic entropy for a specified energy. A controversy has recently emerged between two distinct definitions of the entropy based on the microcanonical ensemble: (1) The Boltzmann entropy, defined by the density of states at a specified energy, and (2) The Gibbs entropy, defined by the sum or integral of the density of states below a specified energy. A critical difference between the consequences of these definitions pertains to the concept of negative temperatures, which by the Gibbs definition cannot exist. In this paper, we call into question the fundamental assumption that the microcanonical ensemble should be used to define the entropy. We base our analysis on a recently proposed canonical definition of the entropy as a function of energy. We investigate the predictions of the Boltzmann, Gibbs, and canonical definitions for a variety of classical and quantum models. Our results support the validity of the concept of negative temperature, but not for all models with a decreasing density of states. We find that only the canonical entropy consistently predicts the correct thermodynamic properties, while microcanonical definitions of entropy, including those of Boltzmann and Gibbs, are correct only for a limited set of models. For models which exhibit a first-order phase transition, we show that the use of the thermodynamic limit, as usually interpreted, can conceal the essential physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call