Abstract

Src-homology region 2 (SH2) domains are stretches of about 100 amino acids which are found to be structurally conserved in a number of signaling molecules. These regions have been shown to bind with high affinity to phosphotyrosine residues within activated receptor tyrosine kinases. Here we report the bacterial expression and purification of individual N-terminal SH2 (NSH2) domains of phosphatidylinositol 3-kinase (PI-3K) binding subunit (p85) and Ras GTPase activating protein (GAP) in amounts suitable for structure-function studies. The p85NSH2 domain stains dark purple and absorbs around 620-640 nm with Stains-all, a dye known to bind to calcium binding proteins. This effect was not observed for the GAPNSH2 domain. Circular dichroism analysis of the N-terminal SH2 domain of these proteins shows that p85NSH2, but not GAPNSH2, undergoes a significant dose-dependent change in conformation in the presence of increasing calcium concentrations. Moreover, the conformational change of p85NSH2 induced by calcium could be replicated by addition of a phosphorylated hexapeptide (DYpMDMK) representing the alpha-PDGFR binding site for p85. Limited proteolysis studies showed a significant calcium-dependent increase in protection of p85NSH2 but not GAPNSH2 from degradation by subtilisin. Our results further indicate that holmium, a trivalent lanthanide ion, which has been previously shown to substitute for calcium, could also protect the p85NSH2 domain from proteolysis even at 10-fold lower concentrations. In vitro binding studies using purified preparations of activated alpha-PDGFR show that calcium did not affect the binding of GAPNSH2 domains to activated alpha-PDGFR.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.