Abstract
As one of the most important second messengers, calcium in nerve cells plays a critical role in neuronal processes, including excitability, neurotransmitter release, synaptic plasticity. Modulation of the calcium concentration is an important means of regulating diverse neuronal functions. To evaluate the role of calcium, quantitative measurement of cytosolic free calcium concentrations is necessary. There are several optical techniques that are available for measurement of calcium in live cells. Laser scanning confocal microscopy and two-photon microscopy are two prevalent techniques for their advantage in spatial resolution. In this paper, calcium in dorsal root ganglion neurons was imaged by laser scanning confocal microscopy and two-photon microscopy with Fluo-3, a calcium specific fluorescence probe. Both of spatial resolution and photobleaching, two common limitations of optical image modality, were compared between laser scanning confocal microscopy and two-photon microscopy, respectively. Three dimension images showed that laser scanning confocal microscopy and two-photon microscopy had not only similar lateral resolution but also parallel vertical resolution. However, Laser scanning confocal microscopy had an advantage over the two-photon microcopy in photobleaching. These results indicated that laser scanning confocal microscopy was more suitable than two-photon microscopy to be applied in imaging calcium in dorsal root ganglion neurons with Fluo-3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.