Abstract

Induction boriding is a metal processing technique that applies a surface accumulation process using a high-frequency electromagnetic field on metal parts. The adoption of this method in industrial applications is anticipated due to its advantages such as high efficiency, precision, and low energy consumption. Induction boriding relies on the principle of using the electromagnetic field to heat metal parts and create desired properties on the surface. During this process, the high-frequency current produced by induction coils penetrates into the metal part, causing heating due to internal resistance. This heating allows the formation of desired characteristics like surface hardness, durability, or other specific attributes. The boriding process is carried out within the range of 2-8 hours and at temperatures between 850-1000°C. In induction boriding, faster boron diffusion is expected, leading to the anticipation of reaching the desired hardness and coating thickness values in a shorter timeframe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.