Abstract
The study aimed to evaluate the effectiveness of blood pool and myocardial models made by stereolithography in the diagnosis of different types of congenital heart disease (CHD). Two modeling methods were applied in the diagnosis of 8 cases, and two control groups consisting of experts and students diagnosed the cases using echocardiography with computed tomography, blood pool models, and myocardial models. The importance, suitability, and simulation degree of different models were analyzed. The average diagnostic rate before and after 3D printing was used was 88.75% and 95.9% (P = 0.001) in the expert group and 60% and 91.6% (P = 0.000) in the student group, respectively. 3D printing was considered to be more important for the diagnosis of complex CHDs (very important; average, 87.8%) than simple CHDs (very important; average, 30.8%) (P = 0.000). Myocardial models were considered most realistic regarding the structure of the heart (average, 92.5%). In cases of congenital corrected transposition of great arteries, Williams syndrome, coronary artery fistula, tetralogy of Fallot, patent ductus arteriosus, and coarctation of the aorta, blood pool models were considered more effective (average, 92.1%), while in cases of double outlet right ventricle and ventricular septal defect, myocardial models were considered optimal (average, 80%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.