Abstract
Digital modulation increases information capacity, data security, and system availability while maintaining high communication quality. As a result, digital modulation techniques are in higher demand than analog modulation techniques due to their ability to transmit larger amounts of data. Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK), and Quadrature Amplitude Modulation (QAM) are critical components of current communications systems development, particularly for broadband wireless communications. In this paper, the comparison of bit error rate performance of different modulation schemes (BPSK, QPSK, and16-QAM) and various equalization techniques such as constant modulus algorithm (CMA) and maximum likelihood sequence estimate (MLSE) for the AWGN and Rayleigh fading channels is analyzed using Simulink. BPSK outperforms QPSK and 16-QAM when compared to the other two digital modulation schemes. Among the three digital modulation schemes, BPSK is showing better performance as compared to QPSK and 16-QAM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Ambient Systems and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.