Abstract

DNA methylation strongly affects chromatin structure and the regulation of gene expression. For many years, bisulfite sequencing PCR (BSP) has served as the "gold standard" for measuring DNA methylation. However, with the evolution of pyrosequencing as a tool to evaluate DNA methylation, the need arises to compare the relative efficiencies of the two techniques in measuring DNA methylation. We provide for the first time a direct assessment of BSP and pyrosequencing to detect and quantify hypomethylation, hypermethylation, and mixed methylation of the ABCB1 promoter in various drug-sensitive and drug-resistant MCF-7 breast cancer cell lines through head-to-head experimentation. Our findings indicate that although both methods can reliably detect increased, decreased, and mixed methylation of DNA, BSP appears to be more sensitive than pyrosequencing at detecting strong hypermethylation of DNA. However, we also observed greater variability in the methylation of CpG sites by BSP, possibly due to the additional bacterial cloning step required by BSP over pyrosequencing. BSP and pyrosequencing equally detected hypomethylation and mixed methylation of DNA. The ability of pyrosequencing to reliably detect differences in DNA methylation across cell populations without requiring the cloning of bisulfite-treated DNA into bacterial expression vectors was seen as a major advantage of this technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call