Abstract

This study compared three acellular scaffolds as templates for the fabrication of skin substitutes. A collagen-glycosaminoglycan (C-GAG), a biodegradable polyurethane foam (PUR) and a hybrid combination (PUR/C-GAG) were investigated. Scaffolds were prepared for cell inoculation. Fibroblasts and keratinocytes were serially inoculated onto the scaffolds and co-cultured for 14 days before transplantation. Three pigs each received four full-thickness 8cm × 8cm surgical wounds, into which a biodegradable temporising matrix (BTM) was implanted. Surface seals were removed after integration (28 days), and three laboratory-generated skin analogues and a control split-thickness skin graft (STSG) were applied for 16 weeks. Punch biopsies confirmed engraftment and re-epithelialisation. Biophysical wound parameters were also measured and analysed. All wounds showed greater than 80% epithelialisation by day 14 post-transplantation. The control STSG displayed 44% contraction over the 16 weeks, and the test scaffolds, C-GAG 64%, Hybrid 66.7% and PUR 67.8%. Immunohistochemistry confirmed positive epidermal keratins and basement membrane components (Integrin alpha-6, collagens IV and VII). Collagen deposition and fibre organisation indicated the degree of fibrosis and scar produced for each graft. All scaffold substitutes re-epithelialised by 4 weeks. The percentage of original wound area for the Hybrid and PUR was significantly different than the STSG and C-GAG, indicating the importance of scaffold retainment within the first 3 months post-transplant. The PUR/C-GAG scaffolds reduced the polymer pore size, assisting cell retention and reducing the contraction of in vitro collagen. Further investigation is required to ensure reproducibility and scale-up feasibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.