Abstract

ObjectiveThe aim of this study was to investigate the biomechanical differences between human dura mater and dura mater substitutes to optimize biomimetic materials. MethodsFour groups were investigated. Group I used cranial dura mater (n=10), group II used Gore-Tex® Expanded Cardiovascular Patch (W.L. Gore & Associates Inc., Flagstaff, AZ, USA) (n=6), group III used Durepair® (Medtronic Inc., Goleta, CA, USA) (n=6), and group IV used Tutopatch® (Tutogen Medical GmbH, Neunkirchen am Brand, Germany) (n=6). We used an axial compression machine to measure maximum tensile strength. ResultsThe mean tensile strengths were 7.01±0.77 MPa for group I, 22.03±0.60 MPa for group II, 19.59±0.65 MPa for group III, and 3.51±0.63 MPa for group IV. The materials in groups II and III were stronger than those in group I. However, the materials in group IV were weaker than those in group I. ConclusionAn important dura mater graft property is biomechanical similarity to cranial human dura mater. This biomechanical study contributed to the future development of artificial dura mater substitutes with biomechanical properties similar to those of human dura mater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.