Abstract

Channel shear connectors are used to transfer longitudinal shear forces through the steel–concrete interface in composite beams. Angle shear connectors without bottom flange compared to channel shear connectors could be cheaper and more economic by saving more steel material. This paper presents an experimental evaluation for comparison of the behaviour of channel and angel shear connectors under monotonic and fully reserved cyclic loading based on 16 push-out tests. The connection shear resistance, ductility and failure modes are presented and discussed. By comparing the channel and angle shear connectors, it was concluded that angle shear connectors showed 7.5–36.4% less shear strength than channel shear connectors under monotonic loading and 23.6–49.2% under fully reversed cyclic loading. Connector’s fracture type of failure was experienced for both channel and angle connectors. After the failure, more cracking was observed in slabs with channels compared to slabs with angles. Furthermore, in despite of sufficient ductility for all channel connectors, angle connectors showed less ductility. The results indicate that the angle shear connector gave good behaviour in terms of the ultimate shear capacity; however, this type of connector cannot satisfy the ductility criteria imposed by some codes. In the end, the shear load capacities obtained from the experiments are compared with those suggested by the design codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.