Abstract
When using machine learning (ML) techniques, users typically need to choose a plethora of algorithm-specific parameters, referred to as hyperparameters. In this paper, we compare the performance of two algorithms, particle swarm optimisation (PSO) and Bayesian optimisation (BO), for the autonomous determination of these hyperparameters in applications to different ML tasks typical for the field of high energy physics (HEP). Our evaluation of the performance includes a comparison of the capability of the PSO and BO algorithms to make efficient use of the highly parallel computing resources that are characteristic of contemporary HEP experiments.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.