Abstract

The field equations of gravity coupled to electromagnetism and equations of motion of a charged particle are part of the Kaluza–Klein theory where general relativity is extended to five dimensions. These equations can also be obtained if nonholonomic constrains are imposed on the 5-vector of particle’s velocity. Hence, further development of the general relativity theory can be sub-Riemannian (or sub-Lorentzian) geometry. Gauge transformations become a special case of coordinate transformations in both the Kaluza–Klein theory and the nonholonomic model. Sub-Riemannian geodesics are proved to be equations of motion of a charged particle. The Dirac operator can be extended for a 5-dimensional manifold as a first-order differential operator. Since the base manifold in physics contains the electromagnetic gauge group [Formula: see text], the eigenvalues of the charge operator are always an integer multiplied by the fundamental electric charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.