Abstract

Next-generation sequencing allows for fine-scale studies of microbial communities. Herein, 16S ribosomal RNA high-throughput sequencing was used to identify, classify, and predict the functions of the bacterial communities in the eggs and ovaries of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), which is a pest that infests a variety of cucurbit fruits at different developmental stages. Taxonomic analyses indicate that bacteria associated with B. cucurbitae represent 19 phyla, which were spread across different developmental stages. Specifically, the egg microbiota had a higher alpha diversity than those of microbiota in the primary and mature ovaries. Significant differences were not observed between the primary and mature ovaries in terms of their microbiota’s alpha diversities. Pseudomonadota, Deinococcota, Bacteroidota, Bacillota, and Actinomycetota were the dominant phyla in all three developmental stages of B. cucurbitae, and Pseudomonadaceae and Enterobacteriaceae were the most abundant families. Owing to the unique physiological environment of the ovaries, the diversity of their bacterial community was significantly lower than that in the eggs. This study provides new insights into the structure and abundance of the microbiota in B. cucurbitae at different developmental stages and contributes to forming management strategies for this pest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.